体外体内超声转染系统( Sonoporation Platform)

型号:SP-100
价格:请致电:010-67529703
品牌:sonidelinc

体外体内超声转染系统


1.jpg

2.png


   

In vitro gene transfer using the SONIDEL Ultrasound Transfection platform

使用SONIDEL超声转染平台体外基因转染

声穿孔已成为基因的功能研究领域中不可或缺的技术手段

----适用于基因转染(gene transfection)和药物转运(drug delivery)

GTS超声波转染仪采用超声波原理,具有安quan性、可靠性、灵活性、高效性。适用于临床试验研究中的基因转染(gene transfection)和药物转运(drug delivery)领域。


主要特点: 

o安quan性:因为超声波可以应用于临床,所以仪器采用超声波原理转染,可以保证后期临床试验研究的安quan性。

o灵活性:超声波转染仪的传感器模块具有自我校正功能,此模块可以更换。

o可用于聚焦超声研究(FUS):具有高强度聚焦超声传感器模块。

o可以结合微泡使用:仪器结合微泡(Microbubbles)使用,可以提高转染效率;并且使用te殊的微泡(如Targesphere SA)可以靶向te定细胞。

 

应用范围:

适用于动物细胞的体外转染,以及动物体内转染(包括子宫内或卵巢内等)。

1.原代细胞和细胞株系,如:HFLS-RA, Hela, KATOⅢ, MKN-45, CHO, NIH/3T3, HL-60, C1271, T24, Mouse ascites, Rat bladder, PC3, U937等。

2.小鼠(Mouse)的大脑、肺、肝脏、肾脏、脾脏、血管、脊髓、皮肤、齿龈、腹膜、关节、足垫、耳朵等。

3.小鼠胚胎(Mouse Fetal)的大脑、肺、心脏、肝脏、肠、羊膜等。

4.大鼠(Rat)的小肠、大肠、唾腺、视网膜、角膜。

5.家兔(Rabbit)的视网膜、角膜等。

6.蜜蜂(Bee)的大脑等。

7.非洲爪蟾蜍(Xenopus)。

8.家蚕(Silkworm)的血细胞、丝腺、中肠、脂肪垫、马氏管、卵巢、睾丸等。


SONIDEL SP100? - Optimised for enhanced ultrasound-mediated gene transfer

oIn Vitro, In Vivo, Ex Vivo, In Ovo transfection / nucleic acid transfer 

oOptimised pre-set ultrasound output programs for use with SONIDEL STK10? Transfection Kit and SONIDEL MB101? Microbubble 

oPrecision engineered in Europe 

oUser friendly 

oSelf-contained robust ultrasound head 

oUltrasound head compatible with direct insertion into tissue culture medium 

oA genuine cost break-through device 

oCE marked 

oElectrical and ultrasound safety comply fully with IEC safety standards .


SONIDEL SP100? with SONIDEL STK10? Kit (including SONIDEL MB101? Microbubble) Photographic Results

Plasmid   DNA – pCMV-Luc

Minicircle DNA – MC07.CMV-luc

3.jpg


3.jpg


MB+DNA

MB+DNA+US

DNA+US


MB+DNA

MB+DNA+US

DNA+US


Plus MB101

No MB101


Plus MB101

No MB101


.Larger Image


Larger Image


Luciferase Expression using MB101 In Vivo (pCMV-luc and MC07.CMV-luc) 

4.jpg

Adherent Cells in Opticell ?

5.jpg


FEATURES


Output Frequency


Output frequency is fixed at   precisely 1 MHz for optimised and reproducible penetration of ultrasound   through tissue culture vessels and tissue-based targets.


Ultrasound Power/Density   Options


Ultrasound power   density/intensity options between 0 and 5 W/cm2 with adjustments   of 0.1 W/cm2.


Duty Cycle Range


A wide range of duty cycles   ranging from 5 – 100% in 5% increments and emitting at a pulse frequency of   100 Hz.

Automated Treatment Control   Time

Automated control of treatment   time that may be adjusted in seconds up to a treatment time of 90 seconds and   thereafter in minutes up to a treatment time of 60 minutes.


Water-sealed Ultrasound head


The ultrasound head is   water-sealed and compatible with operational immersion in liquid.

Pre-programmed Treatment   Parameters


Supplied with 10 Operating   Programs, 5 of which are pre-programmed to the appropriate treatment   parameters to achieve optimal ultrasound-mediated transfection with the   SONIDEL STK? 10 Positive Control Transfection Kit. The other 5   programs may be adjusted to the specific conditions chosen by the operator


Ultrasound Dosage Feedback   Control


The ultrasound head is   equipped with a feedback control that automatically switches off the timer if   contact with the target and transmission of ultrasound to the target is   compromised. In this case the timer countdown mechanism will cease at the   precise time contact was compromised and an audible alarm will sound.


Custom Features Available


Custom features may be   supplied

SPECIFICATIONS

Frequency:

Continuous and pulsed   ultrasound at an optimally pre-set precise frequency of 1 MHz.

Display:

Intensity in W/cm2 (SATP*)

Contact control threshold:

65 %

Treatment time display and   control buttons:

0 – 90 seconds and then switches to minutes (2-60), coupled to contact   control. For enhanced operator control and feedback, the time display will   stop counting down if adequate acoustic ultrasound contact with the target is   compromised. This allows the operator to identify the precise time to which   the target was-exposed to ultrasound in the event of a failure in contact   between the ultrasound head and the target

Ultrasound, continuous:

Pulse frequency / duty cycle

Power density/intensity (Output)

.

100 Hz / 100 %

0 – 5 W/cm2, adjustable in 0.1 Wcm2   increments

Ultrasound, pulsed:

Pulse frequency / duty cycle

Power density/intensity (Output)

.

100 Hz / 5-100 % in 5% increments

0 – 5 W/cm2, adjustable in 0.1 Wcm2   increments

Treatment head:1 MHz, Standard

Geometric surface area   1.5cm2, Diameter 1.38cm, ERA** 0.8cm2, BNR*** max. 6 type collimating, side   panel radiation max. 10 mW/cm2

Mains adapter:

Mains voltage

Frequency

Max, Power consumption

.

100 – 240 Volt

50/60 Hz

40 VA

Safety class:

*II according to IEC 60601-1

Dimensions:

220 x 200 x 195 mm

Weight:

1.7 kg

CE marking:

****

Safety standards:

IEC 60601-1 and IEC   60601-2-5

Environment conditions for   Transport and Storage:

Environment temperature

Relative humidity

Atmospheric pressure

..……………………………………………………………………………………

-10° till +50° C

10 till 100 %

500 till 1060 hPa

Environment conditions   normal use:

Environment temperature

Relative humidity

Atmospheric pressure

………………………………………………………………………………………….

10° till 40° C

10 till 90 % (non condensing)

500 till 1060 hPa

*

***

***

*II

****

SATP = Spatial Average   Temporal Peak (average pulse power)

ERA = Effective Radiating Area, this is the   effective radiating area of the treatment head

BNR = Beam Nonuniformity Ratio, indicates the ratio   between the peaks and the average value of the intensity in the sound beam. A   low BNR excludes high, unwanted energy concentrations

Safety class II (double insulated)

According to European requirement 93/42 EEC

SONIDEL MB101? Microbubble 

Optimised for enhanced ultrasound-mediated gene transfer

  • Polymer-stabilized, lipid-based microbubble

  • Neutral surface charge and PEGylated for reduced non-specific binding      

  • Sterile, liquid preparation

  • Ready to use with no requirement for specialised mixing devices

  • Stable for 6 months at 40C

  • Optimized for use with the SONIDEL SP100 sonoporator

  • Designed specifically for ultrasound-mediated gene transfection /      Nucleic Acid Transfer using in vivo and in vitro target      systems

  • Non-invasive stimulation of gene transfer

  • Efficient gene/nucleic acid transfer

  • In vivo and in vitro applications

  • Compatible for use with plasmids and minicircle DNA

  • Minimal impact on cell/tissue viability

  • Supplied      as part of the SONIDEL STK10      ultrasound transfection kit or as individual pack.


Non-invasive targeted gene transfer/expression of the firefly   luciferase gene in an Opticell-based configuration using ultrasound   (sonoporation)

.

 

.

Ultrasound may be employed to achieve targeted expression of a   transgene either in vitro orin vivo. The data above   indicate the targeting capabilities of the SONIDEL SP100 platform.

Cells have been plated throughout the window of the unit above   and microbubbles together with luciferase-encoding naked plasmid DNA have   been added. Areas-exhibiting luciferase activity have been treated with   ultrasound externally applied to the unit. The data indicate both the   non-invasive nature of the ultrasound-based stimulus AND the site-specific   nature of gene transfer/expression.

System advantages

·           Target   cells covered the complete Opticell membrane surface and positions treated   with ultrasound are non-destructively visualised by photonic imaging.

 

·           Non-invasive   specific spatial targeting of gene transfer to pre-defined sites on the   membrane are clearly visible

 

·           Gene   expression may be quantified directly using photonic imaging or by excision   of the membrane and recovery of the cells.

 

·           Gene   expression may also be visualised and mapped using fluorescence microscopy if   a GFP-based reporter is employed.

See also ultrasound-mediated specific targeting of gene expression in vivo


SP100 Publications


2017

A versatile, stimulus-responsive nanoparticle-based platform   for use in both sonodynamic and photodynamic cancer therapy

Nomikou   N, Curtis K, McEwan C, O'Hagan BM, Callan B, Callan JF, McHale AP.

Acta   Biomater. 2017 Feb;49:414-421. doi: 10.1016/j.actbio.2016.11.031. Epub 2016   Nov 14.

2017

Ultrasound-responsive gene-activated matrices for osteogenic   gene therapy using matrix-assisted sonoporation

Nomikou   N, Feichtinger GA, Saha S, Nuernberger S, Heimel P, Redl H, McHale AP.

J   Tissue Eng Regen Med. 2017 Jan 13. doi: 10.1002/term.2406. [Epub ahead of   print]

 

 

2016

Development of a novel microbubble-liposome complex conjugated   with peptide ligands targeting IL4R on brain tumor cells

Park   SH, Yoon YI, Moon H, Lee GH, Lee BH, Yoon TJ, Lee HJ

Oncol   Rep. 2016 Jul;36(1):131-6. doi: 10.3892/or.2016.4836. Epub 2016 May 24.

2016

Comparing the efficacy of photodynamic and sonodynamic therapy   in non-melanoma and melanoma skin cancer

McEwan   C, Nesbitt H, Nicholas D, Kavanagh ON, McKenna K, Loan P, Jack IG, McHale AP,   Callan JF

Bioorg   Med Chem. 2016 Jul 1;24(13):3023-8. doi: 10.1016/j.bmc.2016.05.015. Epub 2016   May 12.

 

2016

Combined sonodynamic and antimetabolite therapy for the   improved treatment of pancreatic cancer using oxygen loaded microbubbles as a   delivery vehicle

McEwan   C, Kamila S, Owen J, Nesbitt H, Callan B, Borden M, Nomikou N, Hamoudi RA,   Taylor MA, Stride E, McHale AP, Callan JF

omaterials.   2016 Feb;80:20-32. doi: 10.1016/j.biomaterials.2015.11.033. Epub 2015 Nov 26.

2016

Complex interfaces in “phase-change” contrast agents

Capece   S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E,   Paradossi G

Phys   Chem Chem Phys. 2016 Mar 28;18(12):8378-88. doi: 10.1039/c5cp07538f.

2016

Ultrasound-mediated gene transfer (sonoporation) in   fibrin-based matrices: potential for use in tissue regeneration

Nomikou   N, Feichtinger GA, Redl H, McHale AP.

J   Tissue Eng Regen Med. 2016 Jan;10(1):29-39. doi: 10.1002/term.1730. Epub 2013   Apr 17

 

 

2015

Utilizing Ultrasound to Transiently Increase Blood-Brain   Barrier Permeability, Modulate of the Tight Junction Proteins, and Alter   Cytoskeletal Structure

Bae   MJ, Lee YM, Kim YH, Han HS, Lee H

J   Curr Neurovasc Res. 2015;12(4):375-83

 

2015

Sonoporation efficacy on SiHa cells in vitro at raised bath   temperatures—experimental validation of a prototype sonoporation device

Kivinen   J, Togtema M, Mulzer G, Choi J, Zehbe I, Curiel L, Pichardo S

J   Ther Ultrasound. 2015 Nov 6;3:19. doi: 10.1186/s40349-015-0040-9. eCollection   2015.

2015

Optimization of ultrasound parameters for   microbubble-nanoliposome complex-mediated delivery

Yoon   YI, Yoon TJ, Lee HJ

Ultrasonography.   2015 Oct;34(4):297-303. doi: 10.14366/usg.15009. Epub 2015 Apr 22.

 

2015

Oxygen carrying microbubbles for enhanced sonodynamic therapy   of hypoxic tumours

McEwan   C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, Coussios CC, Borden M,   Nomikou N, McHale AP, Callan JF

J   Control Release. 2015 Apr 10;203:51-6. doi: 10.1016/j.jconrel.2015.02.004.   Epub 2015 Feb 4.

 

2015

Open-source, high-throughput ultrasound treatment chamber

Yddal   T, Cochran S, Gilja OH, Postema M, Kotopoulis S

Biomed   Tech (Berl). 2015 Feb;60(1):77-87. doi: 10.1515/bmt-2014-0046.

 

 

2014

Ultrasound-mediated gene delivery of naked plasmid DNA in   skeletal muscles: A case for bolus injections

Sanches   PG, Mühlmeister M, Seip R, Kaijzel E, L?wik C, B?hmer M, Tiemann K, Grüll H

J   Control Release. 2014 Dec 10;195:130-7. doi: 10.1016/j.jconrel.2014.06.033.   Epub 2014 Jun 28.

 

2014

Comparing Efficiency of micro-RNA and mRNA Biomarker   Liberation with Microbubble-Enhanced Ultrasound Exposure

Forbrich   A, Paproski R, Hitt M, Zemp R

Ultrasound   Med Biol. 2014 Sep;40(9):2207-16. doi: 10.1016/j.ultrasmedbio.2014.05.005.   Epub 2014 Jul 9.

 

2014

RNA Biomarker Release with Ultrasound and Phase-Change   Nanodroplets

Paproski   RJ, Forbrich A, Hitt M, Zemp R.

Ultrasound   Med Biol. 2014 Aug;40(8):1847-56. doi: 10.1016/j.ultrasmedbio.2014.01.011.   Epub 2014 May 2.

 

2014

Sonoporation Increases Therapeutic Efficacy of Inducible and   Constitutive BMP2/7 In Vivo Gene Delivery

Feichtinger   GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, Neef A,   Nomikou N, Nau T, van Griensven M, McHale AP, Redl

H.Hum   Gene Ther Methods. 2014 Feb;25(1):57-71. doi: 10.1089/hgtb.2013.113. Epub   2013 Nov 27.

2014

A Device for Performing Sonoporation on Adherent Cell Cultures

Jonathan    Kivinen,

Lakehead   University, Knowledge Commons, Electronic Theses and Dissertations

 

 

2013

Coupling of drug containing liposomes to microbubbles improves   ultrasound triggered drug delivery in mice

Cool   SK, Geers B, Roels S, Stremersch S, Vanderperren K, Saunders JH, De Smedt SC,   Demeester J, Sanders NN.

J   Control Release. 2013 Dec 28;172(3):885-93. doi:   10.1016/j.jconrel.2013.09.014. Epub 2013 Sep 25.

 

2013

Human Concentrative Nucleoside Transporter 3 Transfection with   Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells   Greatly Increases Gemcitabine Uptake

Paproski   RJ, Yao SY, Favis N, Evans D, Young JD, Cass CE, Zemp RJ.

PLoS   One. 2013;8(2):e56423. doi: 10.1371/journal.pone.0056423. Epub 2013 Feb 18.

 

2013

Microbubble-Enhanced Ultrasound Liberation of mRNA Biomarkers   In Vitro

Forbrich   A, Paproski R, Hitt M, Zemp R.

Ultrasound   Med Biol. 2013 Jun;39(6):1087-93. doi: 10.1016/j.ultrasmedbio.2012.12.015.   Epub 2013 Apr 3.

2013

Ultrasound-based molecular imaging and specific gene delivery   to mesenteric vasculature by endothelial adhesion molecule targeted   microbubbles in a mouse model of Crohn's disease

Tlaxca   JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT,   Rivera-Nieves J, Klibanov AL, Lawrence MB

J   Control Release. 2013 Feb 10;165(3):216-25. doi:   10.1016/j.jconrel.2012.10.021. Epub 2012 Nov 8.

2013

Chapter 5: Delivery of small molecules with liposome-loaded   microbubbles to tumors in vivo: a pilot study

Bart   Geers, Steven K. Cool, Joseph Demeester, Stefaan C. De Smedt, Niek N.   Sanders, Ine Lentacker

 

2013

Enhancing Nucleic Acid Delivery with Ultrasound and   Microbubbles

Cool   SK, Geers B, Lentacker I, De Smedt SC, Sanders NN

Methods   Mol Biol. 2013;948:195-204. doi: 10.1007/978-1-62703-140-0_14

 

 

 

2012

Characterisation of the acoustic output of three sonoporation   drug delivery ultrasound systems using an acoustic radiation force balance

Tapihwa   Mabvaro, Jacinta Browne

European   Journal of Medical Physics, October 2012, Volume 28, Issue 4, Page 343

 

2012

Microbubble–sonosensitiser conjugates as therapeutics in   sonodynamic therapy

Nomikou   N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF.

Chem   Commun (Camb). 2012 Aug 28;48(67):8332-4. doi: 10.1039/c2cc33913g. Epub 2012   Jul 13.

 

2012

Microbubble-sonosensitiser conjugates as therapeutics in   sonodynamic therapy

Nomikou   N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF

Chem   Commun (Camb). 2012 Aug 28;48(67):8332-4. doi: 10.1039/c2cc33913g. Epub 2012   Jul 13.

2012

The effects of ultrasound and light on   indocyanine-green-treated tumour cells and tissues

Nomikou   N, Sterrett C, Arthur C, McCaughan B, Callan JF, McHale AP.

ChemMedChem.   2012 Aug;7(8):1465-71. doi: 10.1002/cmdc.201200233. Epub 2012 Jun 19.

2012

Microbubble-enhanced ultrasound-mediated gene transfer -   Towards the development of targeted gene therapy for cancer

Nomikou   N, McHale AP.

Int   J Hyperthermia. 2012;28(4):300-10. doi: 10.3109/02656736.2012.659235.

 

2012

Studies on neutral, cationic and biotinylated cationic   microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in   vivo

Nomikou   N, Tiwari P, Trehan T, Gulati K, McHale AP

Acta   Biomater. 2012 Mar;8(3):1273-80. doi: 10.1016/j.actbio.2011.09.010. Epub 2011   Sep 10.

 

2012

A low-cost intracellular delivery system based on microbubble   and high gravity field

He   C1, Gu Q, Huang M, Yang X, Xing J, Chen J.

Conf   Proc IEEE Eng Med Biol Soc. 2012;2012:2424-7. doi: 10.1109/EMBC.2012.6346453.

 

2012

Chapter III - Evaluation of non-viral BMP2/7 in vivo gene   transfer for ectopic and orthotopic osteoinduction

G.   A. Feichtinger

 

2011

Enhanced ROS production and cell death through combined photo-   and sono-activation of conventional photosensitising drugs

McCaughan   B, Rouanet C, Fowley C, Nomikou N, McHale AP, McCarron PA, Callan JF.

Bioorg   Med Chem Lett. 2011 Oct 1;21(19):5750-2. doi: 10.1016/j.bmcl.2011.08.015.   Epub 2011 Aug 10.

 

2011

Targeted Transfection Mediated by Microbubbles and Ultrasound   in Inflammatory Bowel Disease

Tlaxca,   Jose Luis

ProQuest   Dissertations and Theses; 2011; ProQuest Dissertations & Theses (PQDT)

 

 

 

2010

Analysis of in vitro Transfection by Sonoporation Using   Cationic and Neutral Microbubbles

Tlaxca   JL, Anderson CR, Klibanov AL, Lowrey B, Hossack JA, Alexander JS, Lawrence   MB, Rychak JJ

Ultrasound   Med Biol. 2010 Nov;36(11):1907-18. doi: 10.1016/j.ultrasmedbio.2010.05.014.

 

2010

Exploiting ultrasound-mediated effects in delivering targeted,   site-specific cancer therapy

Nomikou   N, McHale AP.

Cancer   Lett. 2010 Oct 28;296(2):133-43. doi: 10.1016/j.canlet.2010.06.002. Epub 2010   Jul 3.

 

2010

Ultrasound-enhanced drug dispersion through solid tumours and   its possible role in aiding ultrasound-targeted cancer chemotherapy

Nomikou   N et al.

Cancer   Lett. 2010 Feb 1;288(1):94-8. doi: 10.1016/j.canlet.2009.06.028. Epub 2009   Aug 11.

2010

Targeted Ultrasound-Mediated Delivery of Nanoparticles: On the   Development of a New HIFU-Based Therapy and Imaging Device

Seip   R, Chin CT, Hall CS, Raju BI, Ghanem A, Tiemann K.

IEEE   Trans Biomed Eng. 2010 Jan;57(1):61-70. doi: 10.1109/TBME.2009.2028874. Epub   2009 Aug 18.

2010

Ultrasound activation of TiO2 in melanoma tumors

Harada   Y, Ogawa K, Irie Y, Endo H, Feril LB Jr, Uemura T, Tachibana K.

J   Control Release. 2011 Jan 20;149(2):190-5.

doi:10.1016/j.jconrel.2010.10.012.   Epub 2010 Oct 15

 

2010

Ultrasound-mediated Non-invasive Gene Transfer

Nikolitsa   Nomikou,1 Anthony P. McHale,2

Termis.org

 

 

 

2009

Optimising ultrasound-mediated gene transfer (sonoporation) in   vitro and prolonged expression of a transgene in vivo: Potential applications   for gene therapy of cancer

Li   YS, Davidson E, Reid CN, McHale AP

Cancer   Lett. 2009 Jan 8;273(1):62-9. doi: 10.1016/j.canlet.2008.07.030. Epub 2008   Oct 1.

 

 

 

2008

Enhancing ultrasound-mediated cell membrane permeabilisation   (sonoporation) using a high frequency pulse regime and implications for   ultrasound-aided cancer chemotherapy

Li   YS, Reid CN, McHale AP

Cancer   Lett. 2008 Aug 8;266(2):156-62. doi: 10.1016/j.canlet.2008.02.041. Epub 2008   Mar 25.

 

Gene Transfer:

·Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: Potential applications for gene therapy of cancer

Ultrasound Permeation on Drug Delivery:

·Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy

·Enhancing ultrasound-mediated cell membrane permeabilisation (sonoporation) using a high frequency pulse regime and implications for ultrasound-aided cancer chemotherapy

Sonodynamic Therapy:

·Enhanced ROS production and cell death through combined photo- and sono-activation of conventional photosensitising drugs.

·The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues

·Microbubble-sonosensitiser conjugates as therapeutics in sonodynamic therapy

·Ultrasound activation of TiO2 in melanoma tumors

·Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours

SONIDEL Reviews:

Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy

·Microbubble-enhanced ultrasound-mediated gene transfer - Towards the development of targeted gene therapy for cancer.