型号:Nanospinner
联系人:李先生
联系电话:18618101725
品牌:inovenso和意大利
Inovenso使用te的专利“混合电纺技术”。这项新技术结合了基于针的技术和wu针技术的点,这些点包括:高生产效
率(来自wu针技术),对工艺和终产品的非常j确的控制(基于针技术) 。
支持同轴打印
适用于开发商用纳米纤维产品,例如面罩,电池隔板,空气和液体过滤器,伤口敷料等。
大规模工业级量产机型查看详细
|
NE300/200/100等科研机型 |
过滤纳米纤维膜
|
NS 416 PE-3550 |
|
|
产量:2200-4400mL/小时, wu限制连续供液 |
产品成熟,文献量达上千篇 |
+ 95%/ + 99% |
应用及用户案例:
https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829
https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829
https://scholar.google.com.tr/scholar_url?url=https://www.mdpi.com/2073-4360/12/10/2376/pdf&hl=tr&sa=X&d=15229915842923991540&ei=HfiNX_izGIy0ygT3m6bYBw&scisig=AAGBfm2QTPnRcmJgdY7WJqhwO9OTLvnGXA&nossl=1&oi=scholaralrt&hist=NSAhIeoAAAAJ:16172062561605054270:AAGBfm0NgWrUaFisOH1m3cVrJiuKCbAA7g&html=
https://www.sciencedirect.com/science/article/abs/pii/S0144861720313849
https://www.sciencedirect.com/science/article/pii/S014486172031198X
https://www.tandfonline.com/doi/abs/10.1080/10837450.2020.1805761
https://link.springer.com/article/10.1007/s12221-020-9956-y
https://www.degruyter.com/view/journals/ijcre/ahead-of-print/article-10.1515-ijcre-2020-0020/article-10.1515-ijcre-2020-0020.xml
https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.202060239
https://www.sciencedirect.com/science/article/abs/pii/S0168365920304223
https://www.sciencedirect.com/science/article/abs/pii/S1385894720321410#!
https://link.springer.com/article/10.1007/s10876-019-01677-7
Koysuren, O., Karaman, M. and Dinc, H. (2012), Preparation and characterization of polyvinyl borate/polyvinyl alcohol (PVB/PVA) blend nanofibers. J. Appl. Polym. Sci., 124: 2736–2741. doi:10.1002/app.35035
Öteyaka, M. O., Özel, E., Yıldırım, M. M., Aslan, M. H., Oral, A. Y., Özer, M., & Çaglar, S. H. (2011). The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process. doi:10.1063/1.3663116
Mustafa Karaman, Nihat Çabuk, Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films, Thin Solid Films, Volume 520, Issue 21, 31 August 2012, Pages 6484-6488, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2012.06.083
(http://www.sciencedirect.com/science/article/pii/S0040609012008140)
Çabuk, N. (2012). Sıcak filament destekli kimyasal buhar biriktirme yöntemi ile süper su itici nano kaplama sentezi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).
(http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1151)
Köysüren, O. (2012). Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers. Journal of Polymer Engineering, 32(6-7), pp. 407-413. Retrieved 29 Apr. 2016, from doi:10.1515/polyeng-2012-0068
(http://www.degruyter.com/view/j/polyeng.2012.32.issue-6-7/polyeng-2012-0068/polyeng-2012-0068.xml)
Balaconis, Mary K., “The development and design of fluorescent sensors for continuous in vivo glucose monitoring” (2014). Mechanical Engineering Dissertations. Paper 54.
Duzyer, Sebnem & Koral Koç, Serpil & Hockenberger, Asli & Evke, Elif & Kahveci, Zeynep & Uguz, Agah. (2013). Effects of different sterilization methods on polyester surfaces. Tekstil ve Konfeksiyon. 23. 319-324.
Pisignano, D. (2013). Polymer nanofibers: building blocks for nanotechnology. Cambridge: Royal Society of Chemistry.
Nagihan Okutan, Pınar Terzi, Filiz Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers, Food Hydrocolloids, Volume 39, August 2014, Pages 19-26, ISSN 0268-005X, http://dx.doi.org/10.1016/j.foodhyd.2013.12.022.
(http://www.sciencedirect.com/science/article/pii/S0268005X13004062)
UCAR, Nuray; UCAR, Mehmet; KIZILDAĞ, Nuray. DESIGN OF A NOVEL NOZZLE PROTOTYPE FOR INCREASED PRODUCTIVITY AND IMPROVED COATING QUALITY DURING ELECTROSPINNING. Journal of Textile & Apparel/Tekstil ve Konfeksiyon, 2013, 23.3.
Koysuren, O., Karaman, M., Yildiz, H. B., Koysuren, H. N., & Dinç, H. (2014). Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 337-341.
(http://www.tandfonline.com/doi/abs/10.1080/00914037.2013.845188)
Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.Macromolecular Materials and Engineering, 298(5), 504-520.
(http://onlinelibrary.wiley.com/doi/10.1002/mame.201200290/full)
Mustafa Karaman, Fatma Sarıipek, Özcan Köysüren, H. Bekir Yıldız, Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method, Applied Surface Science, Volume 283, 15 October 2013, Pages 993-998, ISSN 0169-4332, http://dx.doi.org/10.1016/j.apsusc.2013.07.058.
(http://www.sciencedirect.com/science/article/pii/S016943321301369X)
Gökçen, M. Yıldırım, A. Demir, A. Allı, S. Allı, B. Hazer, UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly(propylene glycol)-b-polystyrene block copolymer, Composites Part B: Engineering, Volume 57, February 2014, Pages 8-12, ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2013.09.038.
(http://www.sciencedirect.com/science/article/pii/S1359836813005519)
Oteyaka, M., Ozel, E., & Yıldırım, M. (2014). Experimental Study On Relationship Of Applied Power And Feeding Rate On Production Of Polyurethane Nanofibre. Gazı Unıversıty Journal Of Scıence, 26(4), 611-618.
Anna K. Blakney, Cameron Ball, Emily A. Krogstad, Kim A. Woodrow, Electrospun fibers for vaginal anti-HIV drug delivery, Antiviral Research, Volume 100, Supplement, December 2013, Pages S9-S16, ISSN 0166-3542, http://dx.doi.org/10.1016/j.antiviral.2013.09.022.
(http://www.sciencedirect.com/science/article/pii/S0166354213002829)
Dinç, H. (2013). Polivinil borat sentezin; elektrospin yöntemiyle nanofiber hazırlanması ve karakterizasyonu (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).
(http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1158)
Chen, M.C. (2014). Commercial Viability Analysis of Lignin Based Carbon Fibre.
Gao, Y., Bach Truong, Y., Zhu, Y. and Louis Kyratzis, I. (2014), Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci., 131, 40797, doi: 10.1002/app.40797
Balaconis, M. K., Luo, Y., & Clark, H. A. (2015). Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. The Analyst, 140(3), 716–723. doi:10.1039/c4an01775g
(https://pubs.rsc.org/en/content/articlelanding/2015/AN/C4AN01775G#!divAbstract)
Hendessi, S. (2014). Jelatın Veya Jelatın-selüloz Asetat İçeren Nanoliflerin Domates Ketçaplarında Sineresisi Önleyici Olarak Kullanılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).
Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.
(http://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d#!divAbstract)
Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2015). Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(5), 429-432.
Aylin M. Deliormanlı, Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers, Ceramics International, Volume 41, Issue 1, Part A, January 2015, Pages 417-425, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2014.08.086.
(http://www.sciencedirect.com/science/article/pii/S0272884214013236)
Favors, Z., Bay, H. H., Mutlu, Z., Ahmed, K., Ionescu, R., Ye, R., … & Ozkan, C. S. (2015). Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Scientific reports, 5.
(http://www.nature.com/articles/srep08246?message-global=remove&WT.ec_id=SREP-639-20150210)
Ganesh, V. A., Ranganath, A. S., Sridhar, R., Raut, H. K., Jayaraman, S., Sahay, R., … & Baji, A. (2015). Cellulose Acetate–Poly (N‐isopropylacrylamide)‐Based Functional Surfaces with Temperature‐Triggered Switchable Wettability. Macromolecular rapid communications, 36(14), 1368-1373.
Zeybek, B., Duman, M., & Ürkmez, A. S. (2014). Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak University Journal of Material Sciences, 3(1), 121.
(http://search.proquest.com/openview/ecfe94e89a75c0739c7fd72ba51bf90f/1?pq-origsite=gscholar)
Md. Shahidul Islam, Md. Saifur Rahaman, Jeong Hyun Yeum, Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 484, 5 November 2015, Pages 9-18, ISSN 0927-7757, http://dx.doi.org/10.1016/j.colsurfa.2015.07.023.
(http://www.sciencedirect.com/science/article/pii/S092777571530100X)
Jeffrey Bell, Rachel Ye, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, Cengiz S. Ozkan, Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries, Nano Energy, Volume 18, November 2015, Pages 47-56, ISSN 2211-2855, http://dx.doi.org/10.1016/j.nanoen.2015.09.013.
(http://www.sciencedirect.com/science/article/pii/S2211285515003742)
Choi, S. J., Chattopadhyay, S., Kim, J. J., Kim, S. J., Tuller, H. L., Rutledge, G. C., & Kim, I. D. (2016). Coaxial electrospinning of WO 3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale.
(http://pubs.rsc.org/is/content/articlelanding/2016/nr/c5nr06611e/unauth#!divAbstract)
Aylin M. Deliormanlı, Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications, Ceramics International, Volume 42, Issue 1, Part A, January 2016, Pages 897-906, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2015.09.016.
(http://www.sciencedirect.com/science/article/pii/S0272884215017241)
El-Aassar, M. R., El-Deeb, N. M., Hassan, H. S., & Mo, X. (2015). Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Applied biochemistry and biotechnology, 1-15.
(http://link.springer.com/article/10.1007/s12010-015-1962-y)
Aylin M. Deliormanlı, Preparation, in vitro mineralization and osteoblast cell response of electrospun 13–93 bioactive glass nanofibers, Materials Science and Engineering: C, Volume 53, 1 August 2015, Pages 262-271, ISSN 0928-4931, http://dx.doi.org/10.1016/j.msec.2015.04.037.
(http://www.sciencedirect.com/science/article/pii/S0928493115300394)
Guclu, S., Pasaoglu, M. E., & Koyuncu, I. (2015). Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions. Desalination and Water Treatment, 1-9.
(http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1024747)
Ogunlaja, A. S., & Tshentu, Z. R. (2015). Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, 281.
Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. Investigation of wettability and moisture sorption property of electrospun poly (N-isopropylacrylamide) nanofibers. MRS Advances, 1-6.
Ipek Y Enis, Jakub Vojtech, and Telem G Sadikoglu, Alternative solvent systems for polycaprolactone nanowebs via electrospinning, Journal of Industrial Textiles 1528083716634032, first published on February 17, 2016 doi:10.1177/1528083716634032
(http://jit.sagepub.com/content/early/2016/02/17/1528083716634032.abstract)
Zahida Sultanova, Gizem Kaleli, Gözde Kabay, Mehmet Mutlu, Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers, International Journal of Pharmaceutics, Volume 505, Issues 1–2, 30 May 2016, Pages 133-138, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2016.03.032.
(http://www.sciencedirect.com/science/article/pii/S0378517316302320)
Sheng Qi, Duncan Craig, Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms, Advanced Drug Delivery Reviews, Available online 9 January 2016, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2016.01.003.
(http://www.sciencedirect.com/science/article/pii/S0169409X16300059)
Bilge Coşkuner Filiz, Aysel Kantürk Figen, Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency, International Journal of Hydrogen Energy, Available online 18 April 2016, ISSN 0360-3199, http://dx.doi.org/10.1016/j.ijhydene.2016.03.182.
(http://www.sciencedirect.com/science/article/pii/S0360319915318632)
Elkhaldi, R. M., Guclu, S., & Koyuncu, I. (2016). Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalination and Water Treatment, 1-11.
(http://www.tandfonline.com/doi/abs/10.1080/19443994.2016.1159253)
Simon, B., Bachtin, K., Kiliç, A., Amor, B., & Weil, M. (2016). Proposal of a framework for scale‐up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications. Integrated Environmental Assessment and Management. doi: [10.1002/ieam.1788].
(http://onlinelibrary.wiley.com/doi/10.1002/ieam.1788/abstract)
Ganesh, V. A., Ranganath, A. S., Baji, A., Wong, H. C., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation. Macromolecular Materials and Engineering.
(http://onlinelibrary.wiley.com/doi/10.1002/mame.201600074/abstract)
Sahay, R., Parveen, H., Ranganath, A. S., Ganesh, V. A., & Baji, A. (2016). On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Advances, 6(53), 47883–47889. doi:10.1039/c6ra05757h
(https://pubs.rsc.org/en/content/articlelanding/2016/RA/c6ra05757h#!divAbstract)
Gönen, S. Ö., Erol Taygun, M., Aktürk, A., & Küçükbayrak, S. (2016). Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design. Materials Science and Engineering: C, 67, 684–693. doi:10.1016/j.msec.2016.05.065
(https://www.sciencedirect.com/science/article/pii/S0928493116304982)
Mabrouk, M., Choonara, Y. E., Marimuthu, T., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2016). Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. International Journal of Pharmaceutics, 507(1-2), 41–49. doi:10.1016/j.ijpharm.2016.05.011
(https://www.sciencedirect.com/science/article/pii/S0378517316303751?via%3Dihub)
Ozcan, F., Ertul, S., & Maltas, E. (2016). Fabrication of protein scaffold by electrospin coating for artificial tissue. Materials Letters, 182, 359–362. doi:10.1016/j.matlet.2016.07.010
(https://www.sciencedirect.com/science/article/abs/pii/S0167577X16311065)
Di, W., Czarny, R. S., Fletcher, N. A., Krebs, M. D., & Clark, H. A. (2016). Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharmaceutical Research, 33(10), 2433–2444. doi:10.1007/s11095-016-1987-0
(https://link.springer.com/article/10.1007/s11095-016-1987-0)
Tort, S., & Acartürk, F. (2016). Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydrate Polymers, 152, 802–814. doi:10.1016/j.carbpol.2016.07.028
(https://www.sciencedirect.com/science/article/pii/S0144861716308177)
TİYEK, İ , YAZICI, M , ALMA, M , DÖNMEZ, U , YILDIRIM, B , SALAN, T , URUŞ, S , KARATAŞ, Ş , KARTERİ, İ . (2016). Nanolif Yapılı Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yapıların Karakterizasyonu. Tekstil ve Mühendis, 23 (102), 0-0.
Sahay, R., Baji, A., Ranganath, A. S., & Anand Ganesh, V. (2016). Durable adhesives based on electrospun poly(vinylidene fluoride) fibers. Journal of Applied Polymer Science, 134(2). doi:10.1002/app.44393
Kannan, B., Cha, H., & Hosie, I. C. (2016). Electrospinning—Commercial Applications, Challenges and Opportunities. Nano-Size Polymers, 309–342. doi:10.1007/978-3-319-39715-3_11
(https://link.springer.com/chapter/10.1007/978-3-319-39715-3_11)
Northeastern University, Boston, MA(US) (2016). Compositions and methods for measurement of analytes. US20160274030A1.
Sebnem DUZYER [1], Asli HOCKENBERGER [2], Agah UGUZ [3], Elif EVKE [4], ZeynepKAHVECİ [5]. 358 412. Uludağ University Journal of The Faculty of Engineering, 21 (2), 201-218. DOI: 10.17482/uujfe.04230
Sahay, R., Parveen, H., Baji, A., Ganesh, V. A., & Ranganath, A. S. (2016). Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. Journal of Materials Science, 52(5), 2435–2441. doi:10.1007/s10853-016-0537-9
(https://link.springer.com/article/10.1007/s10853-016-0537-9)
Deliormanlı, A. M. (2017). Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications. Ceramics International, 43(4), 3531–3539. doi:10.1016/j.ceramint.2016.11.078
(https://www.sciencedirect.com/science/article/pii/S0272884216320697)
Ganesh, V. A., Ranganath, A. S., Baji, A., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications. Macromolecular Materials and Engineering, 302(2), 1600387. doi:10.1002/mame.201600387
(https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201600387)
İspirli Doğaç, Y., Deveci, İ., Mercimek, B., & Teke, M. (2017). A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. International Journal of Biological Macromolecules, 96, 302–311. doi:10.1016/j.ijbiomac.2016.11.120
(https://www.sciencedirect.com/science/article/pii/S0141813016319572)
Tipduangta, P. (2016). Retrieved from https://ueaeprints.uea.ac.uk/61721/
Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 9(4), 579–585. doi:10.1039/c6ay03073d
(https://pubs.rsc.org/en/content/articlelanding/2016/ay/c6ay03073d/unauth#!divAbstract)
Kolbuk, D. (2016). Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. Nanofiber Research – Reaching New Heights. doi:10.5772/64177
Öztatlı, H., & Ege, D. (2016). Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration. MRS Advances, 2(24), 1291–1296. doi:10.1557/adv.2016.663
das Neves, J. (Ed.), Sarmento, B. (Ed.). (2015). Drug Delivery and Development of Anti-HIV Microbicides. New York: Jenny Stanford Publishing, https://doi.org/10.1201/b17559
Maqsud R. Chowdhury, Liwei Huang, and Jeffrey R. McCutcheon
Industrial & Engineering Chemistry Research 2017 56 (4), 1057-1063
DOI: 10.1021/acs.iecr.6b04256
Sahay, R., Baji, A., Parveen, H., & Ranganath, A. S. (2017). Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers. Applied Physics A, 123(3). doi:10.1007/s00339-017-0816-6
(https://link.springer.com/article/10.1007/s00339-017-0816-6)
Cerkez I, Sezer A, Bhullar SK. 2017 Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality.R. Soc. open sci. 4: 160911. http://dx.doi.org/10.1098/rsos.160911
(https://royalsocietypublishing.org/doi/full/10.1098/rsos.160911)
Yu, M., Dong, R.-H., Yan, X., Yu, G.-F., You, M.-H., Ning, X., & Long, Y.-Z. (2017). Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials and Engineering, 302(7), 1700002. doi:10.1002/mame.201700002
(https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700002)
Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. (2017). Thermoresponsive electrospun membrane with enhanced wettability. RSC Adv., 7(32), 19982–19989. doi:10.1039/c6ra27848e
(https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra27848e)
Thakur, N., Ranganath, A. S., Agarwal, K., & Baji, A. (2017). Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application. Macromolecular Materials and Engineering, 302(7), 1700124. doi:10.1002/mame.201700124
(https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700124)
Yilmaz, M., Erkartal, M., Ozdemir, M., Sen, U., Usta, H., & Demirel, G. (2017). Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Applied Materials & Interfaces, 9(21), 18199–18206. doi:10.1021/acsami.7b03042
Islam, M. S., McCutcheon, J. R., & Rahaman, M. S. (2017). A high flux polyvinyl acetate-coated electrospun nylon 6/SiO 2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. Journal of Membrane Science, 537, 297–309. doi:10.1016/j.memsci.2017.05.019
Sahay, R., & Baji, A. (2017). Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures. Journal of Materials Science, 52(17), 10592–10599. doi:10.1007/s10853-017-1191-6
(https://link.springer.com/article/10.1007/s10853-017-1191-6)
Aksoy, O. E., Ates, B., & Cerkez, I. (2017). Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. Journal of Materials Science, 52(17), 10013–10022. doi:10.1007/s10853-017-1240-1
(https://link.springer.com/article/10.1007/s10853-017-1240-1)
Asadian, M., Grande, S., Morent, R., Nikiforov, A., Declercq, H., & De Geyter, N. (2017). Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. Journal of Physics: Conference Series, 841, 012018. doi:10.1088/1742-6596/841/1/012018
(https://iopscience.iop.org/article/10.1088/1742-6596/841/1/012018/meta)
ALTAY FİLİZ,AZIZZADEH FARZANEH, The Fifth International Symposium Frontiers in Polymer Science (POLY 2017), Seville/İSPANYA, 17 Mayıs 2017
(https://akademi.itu.edu.tr/search-results?st=PAN%20polymer)
Livshits, M. (2017). Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/
(https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1490713190973503)
KARAMAN, M., GÜRSOY, M., AYKÜL, F., TOSUN, Z., KARS, M. D., & YILDIZ, H. B. (2017). Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Science and Technology, 19(8), 085503. doi:10.1088/2058-6272/aa6fec
(https://iopscience.iop.org/article/10.1088/2058-6272/aa6fec/meta)
Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J.-R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 94, 208–221. doi:10.1016/j.eurpolymj.2017.07.013
(https://www.sciencedirect.com/science/article/pii/S0014305717302999)
Tort, S., Acartürk, F., & Beşikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1-2), 642–653. doi:10.1016/j.ijpharm.2017.07.027
(https://www.sciencedirect.com/science/article/pii/S0378517317306269)
Wanjare, M., Hou, L., Nakayama, K. H., Kim, J. J., Mezak, N. P., Abilez, O. J., … Huang, N. F. (2017). Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomaterials Science, 5(8), 1567–1578. doi:10.1039/c7bm00323d
(https://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00323d/unauth#!divAbstract)
Thakur, N., Sargur Ranganath, A., Sopiha, K., & Baji, A. (2017). Thermoresponsive Cellulose Acetate–Poly(N-isopropylacrylamide) –Shell Fibers for Controlled Capture and Release of Moisture. ACS Applied Materials & Interfaces, 9(34), 29224–29233. doi:10.1021/acsami.7b07559
Kim, J. J., Hou, L., Yang, G., Mezak, N. P., Wanjare, M., Joubert, L. M., & Huang, N. F. (2017). Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cellular and Molecular Bioengineering, 10(5), 417–432. doi:10.1007/s12195-017-0502-y
(https://link.springer.com/article/10.1007/s12195-017-0502-y)
Grande, S., Van Guyse, J., Nikiforov, A. Y., Onyshchenko, I., Asadian, M., Morent, R., … De Geyter, N. (2017). Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 9(38), 33080–33090. doi:10.1021/acsami.7b08439
Ramphul, H., Bhaw-Luximon, A., & Jhurry, D. (2017). Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydrate Polymers, 178, 238–250. doi:10.1016/j.carbpol.2017.09.046
(https://www.sciencedirect.com/science/article/pii/S0144861717310718)
Thakur, N., Baji, A., & Ranganath, A. S. (2018). Thermoresponsive electrospun fibers for water harvesting applications. Applied Surface Science, 433, 1018–1024. doi:10.1016/j.apsusc.2017.10.113
(https://www.sciencedirect.com/science/article/pii/S0169433217330593)
Asadian, M., Onyshchenko, I., Thukkaram, M., Esbah Tabaei, P. S., Van Guyse, J., Cools, P., … De Geyter, N. (2018). Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.08.092
(https://www.sciencedirect.com/science/article/pii/S0144861718310002)
Asadian, M., Declercq, H., Cornelissen, M., Morent, R., & De Geyter, N. (2017). Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds. In 31st International conference on surface modification technologies. (https://biblio.ugent.be/publication/8532609/file/8532610)
Senthamizhan, A., Balusamy, B., & Uyar, T. (2017). Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications. In Electrospun Materials for Tissue Engineering and Biomedical Applications (pp. 3-41). Woodhead Publishing.
Salas, C. (2017). Solution electrospinning of nanofibers. In Electrospun Nanofibers (pp. 73-108). Woodhead Publishing.
CHÓLIZ SANZ, SOFÍA. (2017). Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación.
Kiliç, E., Yakar, A., & Bayramgil, N. P. (2018). Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 29(1), 8.
(https://link.springer.com/article/10.1007/s10856-017-6013-5)
Sahin, Y. M., Su, S., Ozbek, B., Yücel, S., Pinar, O., Kazan, D., … & Gunduz, O. (2018). Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of food engineering, 222, 54-62.
Ozbek, B., Erdogan, B., Ekren, N., Oktar, F. N., Akyol, S., Ben-Nissan, B., … & Ozen, G. (2018). Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. Journal of the Australian Ceramic Society, 54(2), 251-260.
(https://link.springer.com/article/10.1007/s41779-017-0149-0)
Akampumuza, O., Gao, H., Zhang, H., Wu, D., & Qin, X. H. (2018). Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit. Macromolecular Materials and Engineering, 303(1), 1700269. (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700269)
Ranganath, A. S., & Baji, A. (2018). Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation. Macromolecular Materials and Engineering, 303(11), 1800272.
(https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201800272)
Polat, N. H., Kap, Ö., & Farzaneh, A. (2018). Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers. Turkish Journal of Chemistry, 42(3), 672-683.
(https://dergipark.org.tr/tr/pub/tbtkchem/issue/45567/572684)
ÇAVDAR, F. Y., & UĞUZ, A. (2019). A comparative study of electrospinning process for two different collectors: The effect of the collecting method on the nanofiber diameters. Mechanical Engineering Journal, 6(1), 18-00298.
(https://www.jstage.jst.go.jp/article/mej/6/1/6_18-00298/_article/-char/ja/)
Kabay, G., Demirci, C., Can, G. K., Meydan, A. E., Daşan, B. G., & Mutlu, M. (2018). A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. International journal of biological macromolecules, 114, 989-997.
(https://www.sciencedirect.com/science/article/pii/S0141813018301107)
Nagai, K., Musgrave, C. S., & Nazarov, W. (2018). A review of low density porous materials used in laser plasma experiments. Physics of Plasmas, 25(3), 030501.
Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627-635.
Deliormanlı, A. M., & Konyalı, R. (2019). Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering. Journal of the Australian Ceramic Society, 55(1), 247-256.
(https://link.springer.com/article/10.1007/s41779-018-0229-9)
Fu, X., Wang, Y., Fan, X., Scudiero, L., & Zhong, W. H. (2018). –Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes. Small, 14(49), 1803564.
(https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201803564)
Kim, S., Traore, Y. L., Ho, E. A., Shafiq, M., Kim, S. H., & Liu, S. (2018). Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta biomaterialia, 82, 12-23.
(https://www.sciencedirect.com/science/article/pii/S1742706118305932)
Turanlı, Y., Tort, S., & Acartürk, F. (2019). Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 49, 58-65.
(https://www.sciencedirect.com/science/article/pii/S1773224718307780)
Demir, A., Acikabak, B., & Ahan, Z. (2018, December). Development of Carbon Nanofiber Yarns by Electrospinning. In IOP Conference Series: Materials Science and Engineering (Vol. 460, No. 1, p. 012027). IOP Publishing.
(https://iopscience.iop.org/article/10.1088/1757-899X/460/1/012027/meta)
Storti, E., Jankovský, O., Colombo, P., & Aneziris, C. G. (2018). Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 38(11), 4109-4117.
(https://www.sciencedirect.com/science/article/abs/pii/S0955221918302632)
AÇIK, G., Kamaci, M., ÖZATA, B., & CANSOY, C. E. Ö. (2019). Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers. Turkish Journal of Chemistry, 43(1), 137-149.
(https://dergipark.org.tr/tr/pub/tbtkchem/issue/45572/572771)
Kalkandelen, C., Ozbek, B., Ergul, N. M., Akyol, S., Moukbil, Y., Oktar, F. N., … & Gunduz, O. (2017, December). Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer. In IOP Conference Series: Materials Science and Engineering (Vol. 293, No. 1, p. 012001). IOP Publishing.
(https://iopscience.iop.org/article/10.1088/1757-899X/293/1/012001/meta)
Unal, S., Oktar, F. N., & Gunduz, O. (2018). Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles. Materials Letters, 221, 107-110.
(https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304786)
Tijing, L. D., Woo, Y. C., Yao, M., Ren, J., & Shon, H. K. (2017). 1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. Comprehensive Membrane Science and Engineering, 418–444. doi:10.1016/b978-0-12-409547-2.12262-0
Shin, J., Lee, E. J., & Ahn, D. U. (2018). Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds. Food Packaging and Shelf Life, 18, 107-114.
(https://www.sciencedirect.com/science/article/abs/pii/S2214289418302448)
Demirkurt, M., Olcer, Y. A., Demir, M. M., & Eroglu, A. E. (2018). Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica chimica acta, 1014, 1-9.
(https://www.sciencedirect.com/science/article/pii/S0003267018302058)
Ege, Z. R., Akan, A., Oktar, F. N., Lin, C. C., Karademir, B., & Gunduz, O. (2018). Encapsulation of indocyanine green in poly (lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics. Materials Letters, 228, 148-151.
(https://www.sciencedirect.com/science/article/abs/pii/S0167577X18309133)
DÜZYER, Ş. (2017). FABRICATION OF ELECTROSPUN POLY (ETHYLENE TEREPHTHALATE) SCAFFOLDS: CHARACTERIZATION AND THEIR POTENTIAL ON CELL PROLIFERATION IN VITRO. TEKSTİL VE KONFEKSİYON, 27(4), 334-341.
(https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/33462/372022)
Aktürk, A., Taygun, M. E., Güler, F. K., Goller, G., & Küçükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 255-262.
(https://www.sciencedirect.com/science/article/abs/pii/S0927775718310252)
Grande, S., Cools, P., Asadian, M., Van Guyse, J., Onyshchenko, I., Declercq, H., … & De Geyter, N. (2018). Fabrication of PEOT/PBT nanofibers by atmospheric pressure plasma jet treatment of electrospinning solutions for tissue engineering. Macromolecular Bioscience, 18(12), 1800309.
(https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800309)
Chen, T., Soroush, A., & Rahaman, M. S. (2018). Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly (vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation. Industrial & Engineering Chemistry Research, 57(43), 14535-14543.
Ma, X. H., Yang, Z., Yao, Z. K., Guo, H., Xu, Z. L., & Tang, C. Y. (2018). Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 5(2), 117-122.
Rezaei, F., Gorbanev, Y., Chys, M., Nikiforov, A., Van Hulle, S. W., Cos, P., … & De Geyter, N. (2018). Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 15(6), 1700226.
(https://onlinelibrary.wiley.com/doi/abs/10.1002/ppap.201700226)
Avsar, G., Agirbasli, D., Agirbasli, M. A., Gunduz, O., & Oner, E. T. (2018). Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate polymers, 193, 316-325.
(https://www.sciencedirect.com/science/article/pii/S0144861718303382)
Ghannadian, P., Moxley Jr, J. W., Machado de Paula, M. M., Lobo, A. O., & Webster, T. J. (2018). Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoletal Defects without Infection. ACS Applied Bio Materials, 1(5), 1566-1578.
Arik, N., Inan, A., Ibis, F., Demirci, E. A., Karaman, O., Ercan, U. K., & Horzum, N. (2019). Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polymer Bulletin, 76(2), 797-812.
(https://link.springer.com/article/10.1007/s00289-018-2409-8)
Gaitán, A., & Gacitúa, W. (2018). Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. BioResources, 13(2), 3659-3673.
Jedrusik, N., Meyen, C., Finkenzeller, G., Stark, G. B., Meskath, S., Schulz, S. D., … & Tomakidi, P. (2018). Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced healthcare materials, 7(10), 1700895.
(https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201700895)
Rogalski, J., Bastiaansen, C., & Peijs, T. (2018). PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning. Fibers, 6(2), 37.
Poss, A. J., Nalewajek, D., Cantlon, C. L., Lu, C., & Wo, S. (2018). U.S. Patent Application No. 15/802,673.
Viel, P., Benzaqui, M., & Shilova, E. (2018). U.S. Patent Application No. 15/750,044.
Ozkan, C. S., Ozkan, M., Bell, J., & Ye, R. (2018). U.S. Patent Application No. 15/776,720. (https://patents.google.com/patent/US20180301690A1/en)
Rezaei, F., Nikiforov, A., Morent, R., & De Geyter, N. (2018). Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Scientific reports, 8(1), 2241.
Köysüren, H. N., & Köysüren, Ö. (2018). Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkolün fotokatalitik bozunması. Journal of the Faculty of Engineering & Architecture of Gazi University, 33(4).
Figen, A. K., & Filiz, B. C. (2019). Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst. Journal of colloid and interface science, 533, 82-94.
(https://www.sciencedirect.com/science/article/pii/S0021979718309639)
Konyalı, R., & Deliormanlı, A. M. (2019). Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats. Journal of Thermoplastic Composite Materials, 32(5), 690-709.
(https://journals.sagepub.com/doi/abs/10.1177/0892705718772889)
Norouzi, M., Abdali, Z., Liu, S., & Miller, D. W. (2018). Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Scientific reports, 8(1), 9377.
ALMA, M. H., YAZICI, M., YILDIRIM, B., & TİYEK, İ. (2017). Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis, 24(108), 243-253.
(https://dergipark.org.tr/tr/pub/teksmuh/issue/33861/374969)
Acik, G., Kamaci, M., & Cansoy, C. E. (2018). Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid and Polymer Science, 296(11), 1759-1766.
(https://link.springer.com/article/10.1007/s00396-018-4395-7)
Tiyek, İ., Yazıcı, M., Alma, M. H., & Karataş, Ş. (2019). The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P (AN-VAc) nanofiber mats/PP spunbond. Journal of Composite Materials, 53(11), 1541-1553.
(https://journals.sagepub.com/doi/abs/10.1177/0021998318806973)
Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273.
(https://www.sciencedirect.com/science/article/pii/S0308814618308719)
Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.
(https://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d/unauth#!divAbstract)
Li, W. (2018). Bacteria-triggered release of a potent biocide from -shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application.
Růžek, V. (2018). Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem.
Maıhemutı, A. (2018). Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules (Master’s thesis, Fen Bilimleri Enstitüsü).
(http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/4603)
Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 157, 19-31.
(https://www.sciencedirect.com/science/article/pii/S0032386118309455)
Asadian, M., Grande, S., Onyshchenko, I., Morent, R., Declercq, H., & De Geyter, N. (2019). A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 481, 1554-1565.
(https://www.sciencedirect.com/science/article/pii/S0169433219308554)
Abdali, Z., Logsetty, S., & Liu, S. (2019). Bacteria-Responsive Single and –Shell Nanofibrous Membranes Based on Polycaprolactone/Poly (ethylene succinate) for On-Demand Release of Biocides. ACS Omega, 4(2), 4063-4070.
Chan, K. V., Asadian, M., Onyshchenko, I., Declercq, H., Morent, R., & De Geyter, N. (2019). Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. Nanomaterials, 9(9), 1215.
Altun, E., Aydogdu, M. O., Togay, S. O., Sengil, A. Z., Ekren, N., Haskoylu, M. E., … & Ahmed, J. (2019). Bioinspired scaffold induced regeneration of neural tissue. European Polymer Journal, 114, 98-108.
(https://www.sciencedirect.com/science/article/pii/S0014305718324765)
Türker, E., Yildiz, Ü. H., & Yildiz, A. A. (2019). Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. International journal of biological macromolecules.
(https://www.sciencedirect.com/science/article/pii/S0141813019350019)
Farzaneh, A., Esrafili, M. D., & Mermer, Ö. (2019). Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations. Materials Chemistry and Physics, 121981.
(https://www.sciencedirect.com/science/article/pii/S0254058419307801)
Dalgic, A. D., Atila, D., Karatas, A., Tezcaner, A., & Keskin, D. (2019). Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering: C, 100, 735-746.
(https://www.sciencedirect.com/science/article/pii/S0928493118326286)
De-Paula, M. M. M., Afewerki, S., Viana, B. C., Webster, T. J., Lobo, A. O., & Marciano, F. R. (2019). Dual effective -shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Materials Science and Engineering: C, 103, 109778.
(https://www.sciencedirect.com/science/article/pii/S0928493118309032)
Tort, S., Demiröz, F. T., Yıldız, S., & Acartürk, F. (2019). Effects of UV exposure time on nanofiber wound dressing properties during sterilization. Journal of Pharmaceutical Innovation, 1-8.
(https://link.springer.com/article/10.1007/s12247-019-09383-7)
Liu, Z., Lu, Y., Li, J., Wang, Y., Wujcik, E. K., & Wang, R. (2019). Electron Microscopy Investigation of CeO 2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation. Microscopy and Microanalysis, 25(S2), 2176-2177.
Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.
Long, Y. Z., Yan, X., Wang, X. X., Zhang, J., & Yu, M. (2019). Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications (pp. 21-52). William Andrew Publishing.
(https://www.sciencedirect.com/science/article/pii/B9780323512701000029)
Kremer, M. H. (2019). Electrospray Deposition of Discrete Nanoparticles: Studies on Pulsed-Field Electrospray and Analytical Applications.
(https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290g61r)
Fernández, J., Ruiz-Ruiz, M., & Sarasua, J. R. (2019). Electrospun Fibers of Polyester, with Both Nano-and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials.
Gurler, E. B., Ergul, N. M., Ozbek, B., Ekren, N., Oktar, F. N., Haskoylu, M. E., … & Temiz, A. F. (2019). Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Materials Science and Engineering: C, 100, 798-808.
(https://www.sciencedirect.com/science/article/pii/S0928493118329187)
Zagyva, T., Balázsi, K., & Balázsi, C. (2019). Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4/MWCNT ceramic composite. PROCESSING AND APPLICATION OF CERAMICS, 13(2), 132-138.
(http://www.doiserbia.nb.rs/Article.aspx?ID=1820-61311902132Z#.XXKXgJMzbfY)
Valtera, J., Kalous, T., Pokorny, P., Batka, O., Bilek, M., Chvojka, J., … & Beran, J. (2019). Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Scientific reports, 9(1), 1801. (https://www.nature.com/articles/s41598-019-38557-z)
Kalybekkyzy, S., Mentbayeva, A., Kahraman, M. V., Zhang, Y., & Bakenov, Z. (2019). Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries. Journal of The Electrochemical Society, 166(3), A5396-A5402. (http://jes.ecsdl.org/content/166/3/A5396.short)
Filiz, B. C., & Figen, A. K. (2019). Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen Energy, 44(20), 9883-9895. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919306974)
Figen, A. K. (2019). Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production. International Journal of Hydrogen Energy. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919305610)
Goonoo, N., Fahmi, A., Jonas, U., Gimié, F., Arsa, I. A., Bénard, S., … & Bhaw-Luximon, A. (2019). Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for letal Tissue Regeneration. ACS applied materials & interfaces, 11(6), 5834-5850. (https://pubs.acs.org/doi/abs/10.1021/acsami.8b19929)
Gürsoy, M., Özcan, F., & Karaman, M. (2019). Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. Journal of Applied Polymer Science, 136(31), 47768.
Somera, L. R., Cuazon, R., Cruz, J. K., & Diaz, L. J. (2019, May). Kinetics and Isotherms Studies of the Adsorption of Hg (II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. In IOP Conference Series: Materials Science and Engineering (Vol. 540, No. 1, p. 012005). IOP Publishing.
(https://iopscience.iop.org/article/10.1088/1757-899X/540/1/012005/meta)
Memic, A., Abudula, T., Mohammed, H. S., Joshi Navare, K., Colombani, T., & Bencherif, S. A. (2019). Latest progress in electrospun nanofibers for wound healing applications. ACS Applied Bio Materials, 2(3), 952-969.
Singh, H., Li, W., Kazemian, M. R., Yang, R., Yang, C., Logsetty, S., & Liu, S. (2019). Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection. ACS Applied Bio Materials, 2(5), 2028-2036.
Yan, G., Niu, H., & Lin, T. (2019). Needle-less Electrospinning. In Electrospinning: Nanofabrication and Applications (pp. 219-247). William Andrew Publishing.
(https://www.sciencedirect.com/science/article/pii/B9780323512701000078)
Sanchez-Rexach, E., Iturri, J., Fernandez, J., Meaurio, E., Toca-Herrera, J. L., & Sarasua, J. R. (2019). Novel biodegradable and non-fouling systems for controlled-release based on poly (ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 9(42), 24154-24163.
(https://pubs.rsc.org/en/content/articlelanding/ra/2019/c9ra04398e#!divAbstract)
Bal, B., Tugluca, I. B., Koc, N., & Isoglu, I. A. (2019). On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats. Materials Research Express, 6(6), 065411.
(https://iopscience.iop.org/article/10.1088/2053-1591/ab0eaa/meta)
Ruckh, T. T., Balaconis, M. K., Clark, H. A., & Skipwith, C. (2019). U.S. Patent Application No. 10/197,498.
(https://patents.google.com/patent/US10197498B2/en?oq=US10197498B2+)
Ozkan, C. S., Ozkan, M., & Favors, Z. (2019). U.S. Patent Application No. 10/211,449. (https://patents.google.com/patent/US10211449B2/en)
Sezer, U. A., Sanko, V., Gulmez, M., Aru, B., Sayman, E., Aktekin, A., … & Sezer, S. (2019). Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Materials Science and Engineering: C, 99, 1141-1152.
(https://www.sciencedirect.com/science/article/pii/S0928493118327024)
Acik, G., & Altinkok, C. (2019). Polypropylene microfibers via solution electrospinning under ambient conditions. Journal of Applied Polymer Science, 136(45), 48199.
Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., … & Gunduz, O. (2019). Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 1-11.
(https://link.springer.com/article/10.1007/s41779-019-00363-1)
Basar, A. O., Sadhu, V., & Sasmazel, H. T. (2019). Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO. Biomedical Materials, 14(4), 045012.
(https://iopscience.iop.org/article/10.1088/1748-605X/ab2035/meta)
Mete, A. A., & Atay, E. PROSES PARAMETRELERİ VE ÇÖZELTİ ÖZELLİKLERİNİN KOAKSİYAL ELEKTROPÜSKÜRTME YÖNTEMİ İLE ELDE EDİLEN NANOPARTİKÜLLERİN MORFOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA, 44(3), 534-551.
Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 48294.
Ghobeira, R., Philips, C., Liefooghe, L., Verdonck, M., Asadian, M., Cools, P., … & Morent, R. (2019). Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 485, 204-221.
(https://www.sciencedirect.com/science/article/pii/S0169433219311018)
Storti, E., Himcinschi, C., Kortus, J., & Aneziris, C. G. (2019). Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning. Journal of the European Ceramic Society.
(https://www.sciencedirect.com/science/article/abs/pii/S0955221919305485)
Işik, C., Arabaci, G., Doğaç, Y. I., Deveci, İ., & Teke, M. (2019). Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Materials Science and Engineering: C, 99, 1226-1235.
(https://www.sciencedirect.com/science/article/pii/S0928493118309317)
Trexler, M. M., Hoffman, C., Smith, D. A., Montalbano, T. J., Yeager, M. P., Trigg, D., … & Xia, Z. (2019). Synthesis and mechanical properties of para‐aramid nanofibers. Journal of Polymer Science Part B: Polymer Physics, 57(10), 563-573.
(https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24810)
Özkan, O. (2019). NERVE GUIDANCE CONDUIT APPLICATION OF MAGNESIUM ALLOYS.
(http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/6176)
Asadian, M., Onyshchenko, I., Thiry, D., Cools, P., Declercq, H., Snyders, R., … & De Geyter, N. (2019). Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 479, 942-952.
(https://www.sciencedirect.com/science/article/pii/S0169433219305203)
Francis Kamau Mwiiri, Rolf Daniels
https://www.sciencedirect.com/science/article/pii/B9780128177761000031?via%3Dihub
Springer Bernhard Christian, Frankenberger Martin, Pettinger Karl-Heinz. PLoS One; San Francisco Vol. 15, Iss. 1, (Jan 2020): e0227903. DOI:10.1371/journal.pone.0227903
Claudia Heuera, Enrico Stortia, Thomas Graule, Christos G.Aneziris.
EMPA, Eidgenössische Materialprüfungs- und Forschungsanstalt, Laboratory for High Performance Ceramics, Überlandstr. 129, 8600, Dübendorf, Switzerland.
https://www.sciencedirect.com/science/article/pii/S0272884220302601?via%3Dihub
Rahul KumarSingh, Sun WohLye, JianminMiao.
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
https://www.sciencedirect.com/science/article/abs/pii/S0924424719317200?via%3Dihub
Silvia Grande, Francesco Tampieri, Anton Nikiforov, Agata Giardina, Antonio Barbon, Pieter Cools, Rino Morent, Cristina Paradisi, Ester Marotta and Nathalie De Geyter.
Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium/Department of Chemical Sciences, Università degli Studi di Padova, Padua, Italy.
https://www.frontiersin.org/articles/10.3389/fchem.2019.00344/full
Silvia Grande,Joachim Van Guyse, Anton Y. Nikiforov, Iuliia Onyshchenko, Mahtab Asadian, Rino Morent, Richard Hoogenboom and Nathalie De Geyte.
Tugba Eren Boncu, Nurten Ozdemir and Aylin Uskudar Guclu.
https://www.tandfonline.com/doi/full/10.1080/03639045.2019.1706550